# Gyrokinetic simulations of electron density fluctuations and comparisons with measurements

R.Budny, E.Feibush, G.Kramer, E.Mazzucato (PPPL),
A.Fonseca (CFN-IST, Lisboa), R.Bravenec (FRC, Austin, Texas),
J.Candy and R.E.Waltz (GA), and the JET-EFDA team

NO3.00011

APS, Orlando, Fl, Nov 14, 2007

- Nonlinear gyrokinetic simulations can predict turbulent-driven energy, momentum, and species transport and fluctuations
- Comparisons of simulations with transport and fluctuation measurements help verify the simulations
- This talk compares simulations of a JET L-mode using the GYRO code with transport analysis and reflectometry measurements
- Encouraging agreement is achieved





#### Reflectometry measurements

- ullet Tunable microwave reflectometers operating in X-mode ( $E\perp B_{TF}$ )
  - 1. JET: 92-96 and 100-106 GHz
- ullet Density fluctuation  $ilde{n}_e(r)$  RMS levels
- ullet Radial correlations of  $ilde{n}_e(r) ilde{n}_e(r')$  and correlation length  $oldsymbol{\lambda_r}$
- ullet Power spectra Fourier Transform of  $ilde{n}_e(t) \ ilde{n}_e(t')$
- Refs:
  - 1. Mazzucato and Nazikian, Phys. Rev. Lett 91 045001 (2003)
  - 2. Mazzucato, Nazikian, Scott, 22 EPS (Bournemouth, 1995)
  - 3. Valeo, Kramer, Nazikian, Plasma Phys. Control. Fusion  $44\,\mathrm{L1}$  (2002)
  - 4. Fonseca et al., Poster NP8.00103





#### Analysis and simulation tools

#### TRANSP

- 1. analyze plasmas for transport analysis and plasma profiles
- TRGK ≡ TRANSP-postprocessor ≡ GYRO-preprocessor
  - 1. generates inputs for GYRO
- GYRO
  - 1. time evolution of potential and distribution functions of kinetic species
  - 2. 3 spatial and 2 phase space dimensions

#### • SCHRADO2

1. Full-wave 2D scattering from density cut-off region





#### **GYRO** simulations

- Nonlinear runs to saturation of ITG/TEM turbulence ( $k_{\theta}\rho_{s}$  < 1.0)
- Kinetic electrons and 2 kinetic ion species (bulk and combined impurities)
- Extended radial domain
- Most runs in the electrostatic approximation
- Achieved mixed success simulating radial flows of energy, species, and toroidal angular momentum in DIII-D, JET, and TFTR plasmas
- ullet Here we focus of simulations of transport and density fluctuations  $ilde{n}_e$
- ullet JET 68733 with  $B_{TF}$ =3.4T,  $I_p$ =2MA,  $P_{NB}$ =5.9MW,  $P_{RF}$  < 2MW





## Approximate agreement for ion energy and angular momentum flows

- TRANSP analysis for ion energy and angular momentum flows
- ullet Varied  $E_r$  flow shearing and up/down 20 percent to study sensitivity







## Approximate agreement for electron energy and species flows

#### TRANSP analysis for electron energy and species flows

ullet Again varied results from inferred  $E_r$  flow and scaled up/down 20 percent







#### Why are simulated flows low in interior, high outside?

Compare mode spectra at different radii



- Simulations very close to marginal near core
- ullet Implies strong sensitivity to drive and suppression terms (plasma gradients and  $E_r$  flow shear)





## Simulated $ilde{n}_e$ fluctuations consistent with reflectometry

- ullet Integrate electron distribution to get  $ilde{n}_e$  in 3D and time
- ullet Use postprocessor to get  $ilde{n}_e(r, heta,\phi=0,t)$
- ullet Compute Root-Mean-Square along outer mid-plane (heta=0)



Both simulation and measurement are less than about 0.2%





#### Radial correlation consistent with reflectometry

- ullet Correlation of  $ilde{n}_e(r_1,t)$  and  $ilde{n}_e(r_2,t)$
- ullet  $\lambda_r$  defined by  $\Delta r$  where correlation decreases below 1/e
- Magnetic axes at 2.97m and outboard separatrix at 3.85m







#### **Animation**

ullet Plan to place two 2D animations of  $ilde{n}_e$  at R=3.22 and 3.55m here



GYRO Simulation of  $\tilde{n}_e$  in Jet 68733

 $R=3.22\ m$ 

r/a = 0.26

 $n_e = 2.58 \times 10^{19} / \text{ m}^3$ 

 $\mathrm{RMS}(\widetilde{n}_e/n_e) = 0.002$ 

 $\lambda_r=1.0\ cm$ 

 $R\equiv 3.53\ m$ 

r/a = 0.60

 $n_e = 1.80 \times 10^{19} / \text{ m}^3$ 

 $RMS(\widetilde{n}_e/n_e) = 0.009$ 

 $\lambda_r = 0.9$  cm





#### How to improve the measurements

- Calculate full wave reflections
  - 1. Simulate fluctuations near cut off
  - 2. Later: Input GYRO simulations of  $ilde{n}_e(r)$
- Simulate measurements assuming 2D scattering from Gaussian fluctuations







#### Summary

- Completed nonlinear gyrokinetic simulations of density fluctuations over extended radial domains
- ullet Found approximate agreement between simulations and measurements of transport and  $ilde{n}_e$  in JET L-mode
- ullet Also found similar agreement with companion shot at higher  $B_{TF}$  (3.8T) approximately consistent with  $ho_*$  scaling
- Recent simulations using 2D full-wave scattering consistent with measurements





# Backup info

For questions





## Example of JET shot

- L-mode heated by NBI and fundamental D-ICRH
- $ullet B_{TF} = 3.4T, I_p = 2.0MA, \kappa = 1.6, \delta = 0.2,$
- ullet  $P_{nbi}=5.9MW$  ,  $P_{ICRH}$  < 2 MW,  $f_{GW}=0.3$  ,  $eta_n=0.45$







#### **Example of GYRO inputs**

Measured profiles mapped by TRANSP



- Simulate extended radial domain to allow turbulence room to saturate
- Domain width  $>> \rho_{\mathcal{S}}$  (ion sound speed gyro-radius)





#### Similar levels of agreement in another JET L-mode

ullet Similar to previous shot, but  $B_{TF}$ : 3.4 ightarrow 3.8 T

Radial correlation function (Pearson method)



ullet Note smaller  $oldsymbol{\lambda_r}$  at higher  $B_{TF}$ 





#### How to improve the measurements

- Calculate full wave reflections
  - 1. Simulate fluctuations near cut off
  - 2. Input GYRO simulations of  $ilde{n}_e(r)$
- Simulate measurements





